AIET 2024 The 2024 5th International Conference on Artificial Intelligence in Education Technology

Barcelona, Spain | July 29-July 31, 2024

AI-Based Student Emotion and Engagement Level Detection Framework

Paper ID: TA047

AGENDA

- Introduction
- Methodology
- Algorithm
- Results
- Limitations
- Future Scope
- References

Measuring engagement levels

- Engagement levels decreased post Covid pandemic after students returned to school
- High student-to-teacher ratio in India
 - Difficult for teachers to assess individual student needs
- Teaching is more focused towards high-engaged students
- Design curriculum and interventions based on individual engagement levels
- Studies show higher levels of engagement are consistently associated with
 - better academic performance
 - lower dropout rates
 - higher levels of student satisfaction

Tools to measure Student Engagement levels

- Non-Technological Tools
 - Surveys and Questionnaires
 - Observation and Behavioral Data
 - Experience Sampling Method (ESM)
 - Psychometric Instruments
 - Qualitative Methods
- Technological Tools
 - Wearable Devices
 - Eye-tracking Technology
 - Emotion to Engagement New

Student Engagement Level Detection Process

Step 1: Video Capture and Ethical Considerations

Without data, the framework cannot produce results.

Video Requirements

- Camera must be at least 20 FPS
- It must be positioned at the front of the class, higher than the desks.
- It must capture as many students as possible at all times.

Ethical Challenges

- Obtaining consent to record students: School and Parents/ Guardians
- Videos cannot be stored. Have to be deleted after use.

Step 2: Video to Frames and Emotion Detection

Video is converted into frames.

Time interval between each prediction: 20 seconds.

Eg. 20 Seconds with a 20 FPS Camera means 1 per 400 frames captured.

On each individual frame, the Emotion Detection CNN is run.

- Emotions Detected: Ekman's 7 Basic Emotions
- Model Training: FER-2013, DEAP, SAVEE
- Model Testing: Data from Indian Classrooms (Aditya English Medium School)
- Final Emotion Detection Accuracy: 86%

Step 3b: Creating Emotion to Engagement Index

- Fig. 2 shows correlation between primary emotions and engagement levels
 - FER model detects a subset of these emotions
- Table 1 shows the Index created of Emotion to a numerical Engagement Level value.
 - Linear Scale from 2 (lowest) to 5 (highest)
 - Value of 1 is not in use since disengagement is technically not possible unless the student is asleep or absent, both of which states cannot be detected in the FER model.

Barcelona, Spain | July 29-July 31, 2024

METHODOLOGY: INNOVATION

- Facial Emotion Recognition using Computer Vision
 - Used in classroom setting to determine student engagement
- Manual methods exist to measure engagement levels
 - Project proposes novel way using FER
- Scope of study limited to identifying 7 basic emotions
 - Happiness, sadness, disgust, surprise, anger, fear, and neutral emotion
- Combination of FER and engagement levels
 - Synthesizes new Computer Vision applications

METHODOLOGY: ENGAGEMENT MODEL

Fig. 2: Different Emotion Correlations to Engagement Levels

Engagement model proposed by Altuwairqi et al.

- Fig. 2 shows correlation between primary emotions and engagement levels
 - FER model detects a subset of these emotions
- Table 1 displays engagement levels for detected emotions
 - Numerical values assigned on linear scale from 5 to 2
 - 5 is highest level of engagement, 2 is lowest
 - FER model does not measure emotions associated with disengagement
 - Value of 1 is not in use

Emotion	Engagement Level	Level - numerical value
Surprise	Strong	5
Fearful, Excited, Anger	High	4
Happy, Sad, Disgust	Medium	3
Neutral	Low	2

Table 1: Emotion - Engagement Correlation

Engagement

CREATING ENGAGEMENT SCALE

- Emotions converted to numerical Engagement Level value
 - Correlation of emotions to engagement mapped through literature review
- New Emotion-based Affective model proposed
 - System ranks emotions according to engagement level
 - Surprise associated with high engagement, stillness with disengagement
- Student engagement categorized into five levels
 - Strong, high, medium, low engagement, and disengagement
 - Detected based on emotion detected
- Framework linked to Engagement Level web service
 - Successful detection of engagement level from photo
 - Images captured at 2-3 minute intervals from real-time video recording

METHOD: TRAINING AND OPTIMIZING THE MODEL

Datasets Used and Tested:

- Affectiva-MIT Facial Expression Dataset: Faces of participants were partially covered with electrodes.
- DISFA: Action Units (Spots) on the faces of participants hindered the model.
- DEAP and SAVEE: Were used to make the model stronger.
- FER-2013: The main dataset used. Comprised of various emotions/ participants, making it optimal.

ALGORITHM: ALGORITHM PROCESS

- Image Conversion
 - Image is converted to a pixel array
- Haar-Cascade Classifier
 - Identifies faces in the image
- Individual Face Processing
 - Each face is processed individually
 - CNN identifies displayed emotion and intensity
- Emotion Display
 - Prominent emotion is displayed
- Engagement Level Identification
 - Algorithm identifies engagement level of student

RESULTS

- Model Accuracy
 - Current accuracy stands at 86%
- Model Architecture
 - 6 Convolutional Layers, 6 Batch Normalization Layers
 - 6 Dropout layers, 3 Dense layers
 - 3 MaxPooling layers, and 2 Flatten Layers
- Emotion Detection
 - 7 primary emotions detected
 - Happiness, sadness, disgust, surprise, anger, fear, and neutral
 - Mapped to high, medium, and low engagement levels
 - Assigned Engagement score from 1 to 5

CHALLENGES

• Ethical

- Consent of students and parents/guardians required for recording
- Recording Requirements
 - Backlight and improper lighting can skew data
 - Teacher training required for usage of this tool
- Student facial detection
 - Better results when student is looking up at the teacher
 - Difficulty in predicting engagement level when student is reading or writing on his desk

Current Progress

- Working with Science and Technology Cluster, Government of India organization
 - Initially working with 25 schools around Pune, Maharashtra, India
- Working with Eagle Robot Lab
 - Private Robotic organization in India building teaching robots
- Technology
 - Template matching to identify specific student

- Pune Knowledge Cluster (PKC) shows interest in the service
 - Working with 25 schools in Maharashtra to plan digital curriculum content
 - Will assess impact of PKC's Digital Literacy Program
- Challenges include obtaining consent from parents
 - Consent obtained from Eagle Robot Lab, Aditya English Medium School, and PKC schools
- Collection of data and training algorithm is important for future
 - Collaboration with companies like Eagle Robot Lab and organizations like PKC
- Project can expand to more schools in India
 - Teachers can use suggested techniques to raise engagement levels
 - More schools have been shortlisted as candidates for deployment

THANK YOU

Barcelona, Spain | July 29-July 31, 2024